Percolation processes in two dimensions. I. Low-density series expansions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 987
(http://iopscience.iop.org/0305-4470/9/1/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:11

Please note that terms and conditions apply.

Pacolation processes in two dimensions I. Low-density serief expansions

M F Sykes and Maureen Glen
Physics Department, King's College, Strand, London WC2R 2LS, UK

Received 3 July 1975, in final form 18 August 1975

Abstract

The derivation of low-density series expansions for the mean cluster size in random site and bond mixtures on a two-dimensional lattice is described briefly. New data are given for the triangular, simple quadratic and honeycomb lattices and their matching lattices.

L. introduction

In this paper we describe the derivation of series expansions required for a study of radom mixtures of sites (or bonds) in the low-density region on a two-dimensional latice. We give new data for the perimeter polynomials and the mean cluster size apansion for the more usual lattices. We assume a general familiarity with the problem; reant reviews are by Shante and Kirkpatrick (1971) and Essam (1972): earlier general articles are by Frisch and Hammersley (1963), Fisher and Essam (1961) and Fisher (10\%4). The critical index, γ, for the mean cluster size is of importance in the theory d saling (Kastelyn and Fortuin 1969, Essam and Gwilym 1971, Essam 1972). In a previous publication (Sykes et al 1973) we reported on a pilot study of the simple gladratic site problem; we now derive data for a comprehensive study of site and bond problems in two dimensions. The analysis of the new data is given in a companion paper (Sykes et al 1976).

1 Series expansions for the mean cluster size at low densities: site problem

The application of series expansions to a study of random mixtures and percolation processes was first introduced by Domb (conference on Fluctuation Phenomenon and Stochastic Processes, Birkbeck College, London, March 1959 and briefly reported in Naure, Lond. 184 509) at a Symposium of the Physical Society and the method we describe is essentially based on notes taken by one of us. To illustrate the basic ideas We take as specific example a random mixture of black and white sites on the triangular antice. We define as the primary species the black sites (probability p) and as the secondary species the white sites (probability $q=1-p$). The low-density region corresponds ${ }^{\text {to }} p<p_{c}$ and in the very-low-density region as $p \rightarrow 0$ the only black clusters will be shall. We illustrate the possible clusters of up to three sites in figure 1. Each cluster of Hack sites must be surrounded by sites of the opposite species. Denoting the expectation

Figure 1. Clusters of up to three sites on the triangular lattice. black sites; O, white side The counts are for an N-site lattice.
(or mean number) per lattice site of clusters of size s (size being measured by the number of sites) by $\left\langle n_{s}\right\rangle$ we readily obtain by inspection:

$$
\begin{align*}
& \left\langle n_{1}\right\rangle=p q^{6} \\
& \left\langle n_{2}\right\rangle=3 p^{2} q^{8} \tag{21}\\
& \left\langle n_{3}\right\rangle=2 p^{3} q^{9}+9 p^{3} q^{10}
\end{align*}
$$

and in general

$$
\begin{equation*}
\left\langle n_{s}\right\rangle=p^{s} D_{s}(q) . \tag{2}
\end{equation*}
$$

The coefficients of each power of p are polynomials D_{s} in q that summarize the average environmental situation for all the clusters of s sites. Unfortunately the problem presented by these perimeter polynomials is one of classical difficulty. Direct enumeration is difficult because of the rapid growth in the total number of possible clusters. We givein table 1 the values of $D_{s}(1)$ for the triangular, simple quadratic and honeycomb latios These total counts of the number of connected clusters (per site) have application to many other problems. They arise in the graph theoretic treatment of the cell growit problem (see the article by Harary 1967 for a bibliography) where they are often called animals; they have application to the enumeration of aromatic hydrocarbons and be theory of chemical graphs (Balaban and Harary 1968 and references there cited); as a pure mathematical problem they have been studied under the name of polyominoes $(s t$ the articles by Lunnon 1971 $\dagger, 1972$ and Golomb 1965). The numbers in table 1 correspond to fixed polyominoes; free polyominoes correspond to an enumeration of space-types (Domb 1960). For example there are three possible free polyominoes of size 3 illustrated in the figure by (3.1-3).

The asymptotic behaviour of the total number of connected clusters appears to be approximately represented by

$$
\begin{equation*}
D_{s}(1) \simeq A s^{-\theta} \lambda^{s} \tag{2}
\end{equation*}
$$

[^0]Table 1. Total number of connected clusters grouped by sites

Sites	Triangular	Simple quadratic	Honeycomb
1	1	1	1
2	3	2	$1 \frac{1}{2}$
3	11	6	3
4	44	19	7
5	186	63	18
6	814	216	47
7	3652	760	125
8	16689	2725	$337 \frac{1}{2}$
9	77359	9910	919
10	362671	36446	$2526 \frac{1}{2}$
11	1716033	135268	7008
12	8182213	505861	$19584 \frac{1}{2}$
13	39267086	1903890	55097
14	189492795	7204874	$155875 \frac{1}{2}$
15	918837374	27394666	443080
16	4474080844	104592937	1264630
17		400795844	3622431
18		1540820542	10409249
19		5940738676	29997257
20			86669481
21			250997035
22			$728445773 \frac{1}{2}$

refe is a constant and λ a lattice-dependent parameter. From a Padé approximant mysis (Gaunt and Guttmann 1974) we estimate that θ is very close to unity (correspondoa logarithmic singularity in the generating function) and the indicated values of λ e:

Triangular

$$
\begin{align*}
& \lambda=5.19 \pm 0.03 \\
& \lambda=4.06 \pm 0.02 \tag{2.4}\\
& \lambda=3.04 \pm 0.02
\end{align*}
$$

Simple quadratic
Honeycomb
apod agreement with the estimates of Lunnon (1971, 1972).
Heap (1963) applied computers to the generation of perimeter polynomials and *ghe technique described by Martin (1974) we have generated perimeter polynomials the more usual lattices. We quote those for the site problem on the triangular, simple wiratic and honeycomb lattices in the appendix. Perimeter polynomials summarize thasic configurational data but they can be usefully supplemented by the application (mane general considerations whose practical application we describe briefly. (For a bided theoretical treatment see, for example, Essam (1972) and Sykes and Essam (4)

Atlow densities the mean density of black sites, p, is obtained by weighting the mean *her of clusters of size s by s and summing over all values of s. We have the formal , Jion

$$
\begin{equation*}
p=\sum_{s} s\left\langle n_{s}\right\rangle . \tag{2.5}
\end{equation*}
$$

. 5 any finite graph the right-hand side of (2.5) must reduce to p identically. For an aite graph the perimeter polynomials provide a double series in p and q; we follow

Domb and suppose the expansion converges up to some $p^{\prime}>0$ and therefore that the mean density of black sites derived in this way is p if p is small enough. Formally the substitution $q=1-p$ in (2.5) interpreted by (2.2) yields p identically as illustraled by the following scheme:

$$
\begin{array}{rlr}
\left\langle n_{1}\right\rangle & =p-6 p^{2}+15 p^{3}-20 p^{4} \ldots+\alpha_{1, n} p^{n}+\ldots \\
2\left\langle n_{2}\right\rangle & = & 6 p^{2}-48 p^{3}+168 p^{4} \ldots+2 \alpha_{2, n} p^{n}+\ldots \\
3\left\langle n_{3}\right\rangle & = & 33 p^{3}-324 p^{4} \ldots+3 \alpha_{3, n} p^{n}+\ldots \tag{26}\\
4\left\langle n_{4}\right\rangle & = & 176 p^{4} \ldots+4 \alpha_{4, n} p^{n}+\ldots \\
\vdots & \\
\sum_{s} s\left\langle n_{s}\right\rangle & =p+0 p^{2}+0 p^{3}+0 p^{4} \ldots+0 p^{n}+\ldots
\end{array}
$$

The condition that the coefficient of p^{4} must vanish determines the total number of clusters of four sites in conjunction with the perimeter polynomials (2.1) through D_{3} : this result generalizes to the statement that the formal identity (2.5), in conjunction with the perimeter polynomials through D_{n-1} determines the total number of clusters of n sites, $\alpha_{n, n}=D_{n}(1)$. For most two-dimensional lattices the expansion of the mean number of clusters

$$
\begin{equation*}
\sum_{s}\left\langle n_{s}\right\rangle=\sum_{n} k_{n} p^{n} \tag{27}
\end{equation*}
$$

can be obtained by special methods. (A detailed treatment is given by Sykes and Essam 1964, 1966). By graph theoretic methods, or by expanding the perimeter polynomials of the corresponding matching lattice in powers of q, the expansion (2.7) is readily extended well beyond the availability of the perimeter polynomials. This yields as additional constraint on (2.6); from the relations

$$
\begin{align*}
& \sum_{s=1}^{n} s \alpha_{s, n}=0 \quad n>1 \tag{28}\\
& \sum_{s=1}^{n} \alpha_{s, n}=k_{n} \tag{29}
\end{align*}
$$

it follows that the total number of clusters of n sites is determined by the perimeter polynomials through D_{n-2} in conjunction with the identity (2.6) and the expansion (27) through p^{n}. We have exploited this property in deriving the data for table 1 ; the total number of clusters in each case has been obtained two orders further than the perimetar polynomials quoted in the appendix.

The mean size of clusters at low densities, $S(p)$, is defined as the mean number of blacs sites connected to any black site:

$$
\begin{equation*}
S(p)=\frac{1}{p} \sum_{s} s^{2}\left\langle n_{s}\right\rangle=\sum_{n} b_{n} p^{n} \tag{2.10}
\end{equation*}
$$

The successive coefficients b_{n} are determined by the $\alpha_{s, n}$ of (2.6) and the same economis exploited to derive the total number of clusters apply to the derivation of these coefficients The coefficients quoted in table 2 have all been derived from perimeter polynomidk supplemented in this way, two extra coefficients having been added in every case. If the total number of clusters at the next order were known, then in conjunction with (28)

Table 2. Coefficients for expansion of $S(p)=\Sigma b_{r} p^{r}$. Site problem.

r	Triangular	Simple quadratic	Honeycomb	Simple quadratic matching	Honeycomb matching
1	6	4	3	8	12
2	18	12	6	32	66
3	48	24	12	108	312
4	126	52	24	348	1368
5	300	108	33	1068	5685
6	750	224	60	3180	$23034 \dagger$
7	1686	412	99	9216	$90288 \dagger$
8	4074	844	156	$26452 \dagger$	$350124 \dagger$
9	8868	1528	276	$73708 \dagger$	$1318767 \dagger$
10	20892	3152	438	$206872 \dagger$	$4986324 \dagger$
11	$44634 \dagger$	$5036 \dagger$	597	$563200 \dagger$	
12	$103392 \dagger$	$11984 \dagger$	$1134 \dagger$	$1555460 \dagger$	
13	$216348 \dagger$	$15040 \dagger$	$1404 \dagger$		
14	$499908 \dagger$	$46512 \dagger$	$2904 \dagger$		
15	$1017780 \dagger$	$34788 \dagger$	$3522 \dagger$		
16		$197612 \dagger$	$6876 \dagger$		
17		$4036 \dagger$	$7548 \dagger$		
18		$929368 \dagger$	$16680 \dagger$		
19			$18153 \dagger$		
20			$39846 \dagger$		
21					

\dagger New coefficient.
and (29) an extra coefficient could be derived for $S(p)$; in general although computer enumeration of the total number of clusters is faster than the generation of perimeter polynomials (which is of necessity more detailed) it is not fast enough to exploit this possibility.

3. Series expansions for the mean cluster size at low densities: bond problem

Fora random mixture of bonds it is sometimes convenient to consider the corresponding bond problem separately; however because of the bond-to-site transformation (Fisher and Essam 1961) bond problems may always be treated as site problems on the corresponding covering lattice. In general the covering lattice will have crossing bonds but the bond problem on the honeycomb lattice corresponds to the site problem on the Kagome batio. Thus if γ is a function of dimension only we must expect the same value for twodimensional site problems as for two-dimensional bond problems. We have derived data for the bond problem on the honeycomb, simple quadratic and triangular lattices; these batices have the advantage that their critical concentrations are known (Sykes and Essam 1964). Unfortunately the corresponding values of the cluster growth parameter λ in (23):

Triangular	$\lambda=8.626 \pm 0.006$
Simple quadratic	$\lambda=5.210 \pm 0.004$
Honeycomb	$\lambda=3.368 \pm 0.002$

are somewhat larger than for the corresponding site problems and this restricts be number of perimeter polynomials that can be obtained for a given expenditure of computer time. The general observations of the previous section apply to these problems and we give the expansion coefficients for $S(p)$ in table 3.

Table 3. Coefficients for expansion of $S(p)=\Sigma b_{p} p^{\prime}$. Bond problem.

r	Triangular	Simple quadratic	Honeycomb
1	10	6	4
2	46	18	8
3	186	48	16
4	706	126	32
5	2568	300	54
6	9004	762	100
7	30894	1668	182
8	103832	4216	328
9	343006	8668	494
10	$1123770 \dagger$	21988	984
11		43058	1572
12		$110832 \dagger$	2656
13		$202432 \dagger$	4212
14			$861020 \dagger$
15			$11176 \dagger$
16			$21704 \dagger$
17			$30994 \dagger$
18			$60548 \dagger$

\dagger New coefficient.

Acknowledgment

This research has been supported by a grant from the Science Research Council.

Appendix. Perimeter polynomials for the site problem

Triangular lattice

$$
\begin{aligned}
& D_{1}=q^{6} \quad D_{2}=3 q^{8} \quad D_{3}=2 q^{9}+9 q^{10} \\
& D_{4}=3 q^{10}+12 q^{11}+29 q^{12} \\
& D_{5}=6 q^{11}+21 q^{12}+66 q^{13}+93 q^{14} \\
& D_{6}=14 q^{12}+43 q^{13}+153 q^{14}+298 q^{15}+306 q^{16} \\
& D_{7}=q^{12}+30 q^{13}+111 q^{14}+366 q^{15}+840 q^{16}+1290 q^{17}+1014 q^{18} \\
& D_{8}=6 q^{13}+69 q^{14}+291 q^{15}+957 q^{16}+2349 q^{17}+4299 q^{18}+5310 q^{19}+3408 q^{20} \\
& D_{9}=27 q^{14}+166 q^{15}+803 q^{16}+2592 q^{17}+6734 q^{18}+13634 q^{19}+20469 q^{20} \\
& \quad \quad+21372 q^{21}+11562 q^{22}
\end{aligned}
$$

$$
\begin{aligned}
D_{10}=3 q^{14} & +86 q^{15}+492 q^{16}+2157 q^{17}+7484 q^{18}+19416 q^{19}+42963 q^{20} \\
& +72256 q^{21}+93747 q^{22}+84468 q^{23}+39599 q^{24} \\
D_{11}=24 q^{15} & +255 q^{16}+1542 q^{17}+6111 q^{18}+21810 q^{19}+58164 q^{20}+133380 q^{21} \\
& +247974 q^{22}+364314 q^{23}+415422 q^{24}+330414 q^{25}+136623 q^{26} \\
D_{1:}=2 q^{15} & +117 q^{16}+801 q^{17}+4771 q^{18}+18608 q^{19}+63804 q^{20}+179186 q^{21} \\
& +417270 q^{22}+829725 q^{23}+1348139 q^{24}+1762933 q^{25} \\
& +1800147 q^{26}+1282260 q^{27}+474450 q^{28} \\
& \\
D_{13}=27 q^{16} & +426 q^{17}+2858 q^{18}+14442 q^{19}+58902 q^{20}+192626 q^{21}+554523 q^{22} \\
& +1331286 q^{23}+2746954 q^{24}+4819800 q^{25}+6996003 q^{26} \\
& +8279398 q^{27}+7664811 q^{28}+4948374 q^{29}+1656656 q^{30} \\
D_{14}=3 q^{16}+ & 168 q^{17}+1524 q^{18}+10029 q^{19}+46119 q^{20}+185220 q^{21}+605766 q^{22} \\
& +1730943 q^{23}+4287699 q^{24}+9131949 q^{25}+16871550 q^{26} \\
& +26571525 q^{27}+35061399 q^{28}+37965417 q^{29}+32198928 q^{30} \\
& +19012074 q^{31}+5812482 q^{32} .
\end{aligned}
$$

Simple quadratic lattice

$$
\begin{aligned}
& D_{1}=q^{4} \quad D_{2}=2 q^{6} \quad D_{3}=4 q^{7}+2 q^{8} \\
& D_{4}=9 q^{8}+8 q^{9}+2 q^{10} \\
& D_{5}=q^{8}+20 q^{9}+28 q^{10}+12 q^{11}+2 q^{12} \\
& D_{0}=4 q^{9}+54 q^{10}+80 q^{11}+60 q^{12}+16 q^{13}+2 q^{14} \\
& \text { D. }=22 q^{10}+136 q^{11}+252 q^{12}+228 q^{13}+100 q^{14}+20 q^{15}+2 q^{16} \\
& D_{8}=4 q^{10}+80 q^{11}+388 q^{12}+777 q^{13}+818 q^{14}+480 q^{15}+152 q^{16}+24 q^{17}+2 q^{18} \\
& \begin{aligned}
D_{9}=28 q^{11} & +291 q^{12}+1152 q^{13}+2444 q^{14}+2804 q^{15}+2089 q^{16}+856 q^{17}+216 q^{18} \\
& +28 q^{19}+2 q^{20}
\end{aligned} \\
& D_{10}=4 q^{11}+154 q^{12}+986 q^{13}+3676 q^{14}+7612 q^{15}+9750 q^{16}+8192 q^{17}+4330 q^{18} \\
& +1416 q^{19}+292 q^{20}+32 q^{21}+2 q^{22} \\
& D_{11}=52 q^{12}+644 q^{13}+3530 q^{14}+11772 q^{15}+24472 q^{16}+33336 q^{17}+31202 q^{18} \\
& 19532 q^{19}+8130 q^{20}+2180 q^{21}+380 q^{22}+36 q^{23}+2 q^{24} \\
& D_{12}=9 q^{12}+325 q^{13}+2644 q^{14}+12502 q^{15}+38694 q^{16}+79730 q^{17}+114342 q^{18} \\
& +115502 q^{19}+83183 q^{20}+41136 q^{21}+14064 q^{22}+3208 q^{23}+480 q^{24} \\
& +40 q^{25}+2 q^{26} \\
& D_{13}=q^{12}+112 q^{13}+1660 q^{14}+10480 q^{15}+44574 q^{16}+129020 q^{17}+264482 q^{18} \\
& +391432 q^{19}+423786 q^{20}+337144 q^{21}+193820 q^{22}+79240 q^{23} \\
& +22993 q^{24}+4508 q^{25}+592 q^{26}+44 q^{27}+2 q^{28} \\
& D_{14}=28 q^{13}+828 q^{14}+7508 q^{15}+41408 q^{16}+158532 q^{17}+437186 q^{18}+887404 q^{19} \\
& +1347560 q^{20}+1538558 q^{21}+1331170 q^{22}+859176 q^{23}+410302 q^{24} \\
& +142624 q^{25}+35664 q^{26}+6160 q^{27}+716 q^{28}+48 q^{29}+2 q^{30} \\
& D_{15}=4 q^{13}+332 q^{14}+4608 q^{15}+33046 q^{16}+160296 q^{17}+566886 q^{18}+1497208 q^{19} \\
& +3014432 q^{20}+4655776 q^{21}+5565832 q^{22}+5144236 q^{23} \\
& +3662778 q^{24}+1978664 q^{25}+805740 q^{26}+242484 q^{27}+53286 q^{28} \\
& +8152 q^{29}+852 q^{30}+52 q^{31}+2 q^{32}
\end{aligned}
$$

$$
\begin{aligned}
D_{16}=106 q^{14} & +2406 q^{15}+23311 q^{16}+1401111 q^{17}+615940 q^{18}+2031394 q^{19} \\
& +5185083 q^{20}+10325335 q^{21}+16192608 q^{22}+20054044 q^{23} \\
& +19633804 q^{24}+15125366 q^{25}+9086116 q^{26}+4207428 q^{27} \\
& +1487681 q^{28}+393736 q^{29}+76826 q^{30}+10584 q^{31}+1000 q^{32} \\
& +56 q^{33}+2 q^{34} \\
D_{17}=22 q^{14} & +1104 q^{15}+14385 q^{16}+110132 q^{17}+581976 q^{18}+2346548 q^{19} \\
& +7313380 q^{20}+18091092 q^{21}+35693692 q^{22}+56587516 q^{23} \\
& +72212800 q^{24}+74161528 q^{25}+6112246 q q^{26}+40085932 q^{27} \\
& +20749892 q^{28}+8377000 q^{29}+2609116 q^{30}+614816 q^{31} \\
& +107801 q^{32}+13424 q^{33}+1160 q^{34}+60 q^{35}+2 q^{36} .
\end{aligned}
$$

Honeycomb lattice

$$
\begin{aligned}
& D_{1}=q^{3} \quad D_{2}=1 \frac{1}{2} q^{4} \quad D_{3}=3 q^{5} \\
& D_{4}=7 q^{6} \quad D_{5}=3 q^{6}+15 q^{7} \\
& D_{6}=\frac{1}{2} q^{6}+15 q^{7}+31 \frac{1}{2} q^{8} \\
& D_{7}=3 q^{7}+60 q^{8}+62 q^{9} \\
& D_{8}=37 \frac{1}{2} q^{8}+177 q^{9}+123 q^{10} \\
& D_{9}=12 q^{8}+190 q^{9}+471 q^{10}+246 q^{11} \\
& D_{10}=1^{1} q^{8}+111 q^{9}+744 q^{10}+1167 q^{11}+503 q^{12} \\
& D_{11}=39 q^{9}+705 q^{10}+2361 q^{11}+2874 q^{12}+1029 q^{13} \\
& D_{12}=9 q^{9}+449 \frac{1}{2} q^{10}+3006 q^{11}+7078 q^{12}+6927 q^{13}+2115 q^{14} \\
& D_{13}=q^{9}+207 q^{10}+2721 q^{11}+11181 q^{12}+20160 q^{13}+16473 q^{14}+4354 q^{15} \\
& D_{14}=69 q^{10}+1902 q^{11}+12937 \frac{1}{2} q^{12}+37635 q^{13}+55794 q^{14}+38526 q^{15}+9012 q^{16} \\
& D_{15}=15 q^{10}+1083 q^{11}+11758 q^{12}+52311 q^{13}+120537 q^{14}+149349 q^{15} \\
& +89304 q^{16}+18723 q^{17} \\
& D_{16}=1 \frac{1}{2} q^{10}+492 q^{11}+8895 q^{12}+57960 q^{13}+194656 \frac{1}{2} q^{14}+367394 q^{15} \\
& +390750 q^{16}+205416 q^{17}+39065 q^{18} \\
& D_{17}=162 q^{11}+5796 q^{12}+53949 q^{13}+252297 q^{14}+674724 q^{15}+1081608 q^{16} \\
& +1001814 q^{17}+470322 q^{18}+81759 q^{19} \\
& D_{18}=33 q^{11}+3258 q^{12}+43728 q^{13}+275614 \frac{1}{2} q^{14}+998280 q^{15}+2227525 \frac{1}{2} q^{16} \\
& +3085374 q^{17}+2531651 q^{18}+1072167 q^{19}+171618 q^{20} \\
& D_{19}=3 q^{11}+1522 q^{12}+31536 q^{13}+262848 q^{14}+1248556 q^{15}+3696108 q^{16} \\
& +7046169 q^{17}+8595792 q^{18}+6317457 q^{19}+2436234 q^{20} \\
& +361032 q^{21} \\
& D_{20}=565 \frac{1}{2} q^{12}+20355 q^{13}+224571 q^{14}+1365312 q^{15}+5186827 \frac{1}{2} q^{16} \\
& +12951117 q^{17}+21572958 q^{18}+23461497 q^{19}+15606471 q^{20} \\
& +5518698 q^{21}+761109 q^{22} \text {. }
\end{aligned}
$$

eferences

ghtaran A T and Harary F 1968 Tetrahedron 24 2505-16
Dow 1960 Phil. Mag. Suppl. 9 301-2
IW 1972 Phase Transitions and Critical Phenomena, vol 2 eds C Domb and M S Green (New York: Academic Press) pp 197-270
Ean JW and Gwilym K M 1971 J. Phys. C: Solid St. Phys. 4 L228-30
Fide M E 1964 Proc. IBM Scientific Computing Symp. on Combinatorial Problems (New York: IBM) pp 179-98
Far M E and Essam J W 1961 J. Math. Phys. 2 609-19
Fisch HL and Hammersley J M 1963 J. Soc. Indust. Appl. Math. 11 894-918
Gami DS and Guttmann A J 1974 Phase Transitions and Critical Phenomena, vol 3 eds C Domb and M S Green (New York: Academic Press) pp 181-243
Golmb W S 1965 Polyominoes (New York: Scribner's)
Harry F 1967 Graph Theory and Theoretical Physics ed F Harary (London: Academic Press) pp 1-41
Hap B R 1963 Proc. Phys. Soc. 82 252-63
Kesedyn P and Fortuin C M 1969 Suppl. J. Phys. Soc. Japan 26 11-14
Lmon WF 1971 Computers in Number Theory eds A O L Atkin and B J Birch (London: Academic Press) Fp 347-72
-1972 Graph Theory and Computing ed R Read (New York: Academic Press) pp 101-8
ManinJL 1974 Phase Transitions and Critical Phenomena, vol 3 eds C Domb and M S Green (New York: Academic Press) pp 97-112
Stant V K S and Kirkpatrick S 1971 Adv. Phys. 20 325-57
Sitco M F and Essam J W 1964 J. Math. Phys. 5 1117-27

- 1966 J. Math. Phys. 7 1573-81

Syes MF, Martin J L and Essam J W 1973 J. Phys. A: Math., Nucl. Gen. 6 1306-9
Siks M F, Gaunt D S and Glen M 1976 J. Phys. A: Math. Gen. 997-103

[^0]: \dagger The number of clusters with 17 sites on the simple quadratic lattice there given is incorrect.

