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Abstract. The derivation of low-density series expansions for the mean cluster size in 
random site and bond mixtures on a two-dimensional lattice is described briefly. New data 
are given for the triangular, simple quadratic and honeycomb lattices and their matching 
lattices. 

In this paper we describe the derivation of series expansions required for a study of 
midandom mixtures of sites (or bonds) in the low-density region on a two-dimensional 
k. We give new data for the perimeter polynomials and the mean cluster size 
npansionfor themore usual lattices. We assume a general familiarity with the problem ; 
reoen1 reviews are by Shante and Kirkpatrick (1971) and Essam (1972): earlier general 
artiCles are by Frisch and Hammersley (1963), Fisher and Essam (1961) and Fisher 
11%4). The critical index, y, for the mean cluster size is of importance in the theory 
ddbg (Kastelyn and Fortuin 1969, Essam and Gwilym 1971, Essam 1972). In 
aPRVhS publication (Sykes et ai 1973) we reported on a pilot study of the simple 
Wdntic site problem ; we now derive data for a comprehensive study of site and bond 
~ o k n S  in two dimensions, The analysis of the new data is given in a companion 
PW(Sykes er a1 1976). 

expansions for the mean cluster size at low densities: site problem 

application of series expansions to a study of random mixtures and percolation 
FQ@%es Was first introduced by Domb (conference on Fluctuation Phenomenon and 
S t o c ~ ~ i c  Processes, Birkbeck College, London, March 1959 and briefly 'reported in 
E;crtsre~ h n d .  184 509) at a Symposium of the Physical Society and the method we 
desmbeiS essentially based on notes taken by one of us. To illustrate the basic ideas 

as specific example a random mixture of black and white sites on the triangular '5. Wedefine as the primary species the black sites (probability p )  and as the second- : the white sites (probability q = 1 - p ) .  The low-density region corresponds 
PC and in the very-low-density region as p + 0 the only black clusters will be 
We illustrate the possible clusters of up to three sites in figure 1. Each cluster of 

Mdd[sltesmust be surrounded by sites of the opposite species. Denoting the expectation 
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Fv 1. Clusters of up to three sites on the triangular lattice. 0, black sites; 0, w h i k k  
The wunts are for an N-site lattice. 

(or mean number) per lattice site of clusters of size s (size being measured by the numba 
of sites) by (n,) we readily obtain by inspection : 

( n J  = w6 
( n 2 )  = 3p2q8 (211 

( n 3 )  = 2p3q9+9p3q10 

(n,) = P W d .  (U) 
and in general 

The coefficients of each power of p are polynomials D, in q that summarize the aver% 
environmental situation for all the clusters of s sites. Unfortunately the problem PP 
sented by these perimeter polynomials is one of classical difficulty. Direct enumerationis 
difficult because of the rapid growth in the total number of possible clusters. Wegivea 
table 1 the values of D,(1) for the triangular, simple quadratic and honeycomb lath& 
These total counts of the number of connected clusters (per site) have application to 
many other problems. They arise in the graph theoretic treatment of the cell 
problem (see the article by Harary 1967 for a bibliography) where they are often 
animals : they have application to the enumeration of aromatic hydrocarbons and 
theory of chemical graphs (Balaban and Harary 1968 and references there cited): sa 
pure mathematical problem they have been studied under the name of polyominoes(S$ 
thearticles by Lunnon 1971~,1972andGolomb 1965). Thenumbers in table 1 corresPod 
to Jxed polyominoes ; free polyominoes correspond to an enumeration of spa@-tYP” 
(Domb 1960). For example there are three possible free polyominoes of size 3 illustrated 
in the figure by (3.1-3). 

The asymptotic behaviour of the total number of connected clusters appears to be 
approximately represented by 

D,(1) 5 As-ei.” (U1 

t ’Jhe number of clusten with 17 sites on the simple quadratic lattice there given is i n c o ~ ~ t .  
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Table 1. Total number of connected clusters grouped by sites 
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Sites Triangular Simple quadratic Honeycomb 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

1 
3 
11 
44 
186 
814 
3 652 
16 689 
77 359 
362 671 
1 716 033 
8 182213 
39 267 086 
189 492 795 
918 837 374 
4 474 080 844 

1 
L 
6 
19 
63 
216 
760 
2 725 
9 910 
36 446 
135 268 
505 861 
1 903 890 
7 204 874 
27 394 666 
104 592 937 
400 795 844 
1 540 820 542 
5 940 738 676 

1 

3 
7 
18 
47 
12s 

919 

7 008 
19 5844 
55 097 
155 87* 
443 080 
1 264 630 
3 622 431 
10 409 249 
29 997 257 
86 669 48 1 
250 997 035 
728 445 773f 

1% 

337) 

2 5264 

lape i3 is a constant and I a lattice-dependent parameter. From a Padt approximant 
*(Gaunt and Guttmann 1974) we estimate that 6 is very close to unity (correspond- 
qto a logarithmic singularity in the generating function) and the indicated values of I 
8: 

Triangular A = 5*19+0.03 

Simple quadratic A = 4-06 0.02 

Honeycomb A = 3.04k0.02 
(2.4) 

"agreement with the estimates of Lunnon (1971, 1972). 
Hap (1963) applied computers to the generation of perimeter polynomials and 

?de technique described by Martin (1974) we have generated perimeter polynomials 
L h m "  usual lattices. We quote those for the site problem on the triangular, simple 
*tic and honeycomb lattices in the appendix. Perimeter polynomials summarize 

configurational data but they can be usefully supplemented by the I, application 
general considerations whose practical application we describe briefly. (For a a heoretical treatment see, for example, Essam (1972) and Sykes and Essam 

N).) 
Atlow densities the mean density of black sites, p ,  is obtained by weighting the mean 

%rofclusters of size s by s and summing over all values of s. We have the formal 
hn 

(2.5) 

bite graph the right-hand side of (2.5) must reduce to p identically. For an 
@e@aph the perimeter polynomials provide a double series in p and 4 ; we follow 
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Domb and suppose the expansion converges up to some p' > 0 and therefore 
the mean density of black sites derived in this way is p if p is small enough. F 
the substitution q = 1 - p  in (2.5) interpreted by (2.2) yields p identically as illustw 
by the following scheme: 

M F Sykes and M Glen 

(nl) = p - 6 p 2 + 1 5 p 3 -  2Op 4 . . .  +al,,#+ . . .  

2 ( n 2 )  = 6p2-48p3+  1 6 8 p 4 . .  . -t2a2,,pn+ . . . 

3 ( n d  = 33p3 - 3 2 4 ~ ~ .  . . + 3~3,Jf"' . . . f16) 

4 ( 4 )  = 1 76p4 . . . + 4a4,npn + . . . 

2 s (ns)  = P + ~ p 2 + ~ P 3  +oP4.  . . + opn+. . . . 
5 

The condition that the coefficient of p4 must vanish determines the total numberd 
clusters of four sites in conjunction with the perimeter polynomials (2.1) through D,: 
this result generalizes to the statement that the formal identity (2.5j, in conjunctionPiith 
the perimeter polynomials through D,- determines the total number of clusters dn 
sites, an," = D,( 1). For most twodimensional lattices the expansion of the mean numk 
of clusters 

s n 

can be obtained by special methods. (A detailed treatment is given by Sykes and Esm 
1964, 1966). By graph theoretic methods, or by expanding the perimeter polynomials 
of the corresponding matching lattice in powers of q, the expansion (2.7) is readily 
extended well beyond the availability of the perimeter polynomials. This yields an 
additional constraint on (2.6) ; from the relations 

n 

as,n k n  (U 
s= 1 

it follows that the total number of clusters of n sites is determined by the peheta 
polynomials through Dn-2 in conjunction with the identity (2.6) and the expansion (27) 
through p". We have exploited this property in deriving the data for table 1.; the total 
number of clusters in each case has been obtained two orders further than the pedeta  
polynomials quoted in the appendix. 

The mean size of clusters at low densities, S@), is defined as the mean number of black 
sites connected to any black site : 

The successive coefficients b, are determined by the as," of (2.6) and the same econorma 
exploited to derive the total number ofclusters apply to the derivation of these coeffici?' 
The coefficients quoted in table 2 have all been derived from perimeter po@oou' 
supplemented in this way, two extra coefficients having been added in every &. If 
the total number of clusters at the next order were known, then in conjunctionwitb(* 7 SI 
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Table 2. Coefficients for expansion of S(p)  = Zb,pl. Site problem. 
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Simple quadratic Honeycomb 
Triangular Simple quadratic Honeycomb matching matching 

- 
1 6  
2 18 
3 48 

5 300 

7 1686 

9 8868 
10 20892 
11 44634t 
12 103392t 
13 216348t 
14 499908t 
15 10177801 
16 
17 
18 
19 
20 
21 

4 126 

6 750 

8 4074 

4 
12 
24 
52 
108 
224 
412 
844 
1528 
3 152 
5 036t 
11 9847 
15 0407 
46 512t 
34 7887 
197 6121 
4 036t 
929 3681 

3 
6 
12 
24 
33 
60 
99 
156 
276 
438 
597 
1 134t 
1404t 
2 904t 
3 522t 
6 876t 
7 5481- 
16 680t 
18 1537 
39 846t 
41 805t 

8 
32 
108 
348 
1068 
3 180 
9 216 
26 452t 
73 708t 
206 872t 
563 xwlt 
1 555 460t 

12 
66 
312 
1 368 
5 685 
23 034t 
90 2887 
350 124t 
1 318 767t 
4 986 324t 

t New coefficient. 

and (29) an extra coefficient could be derived for S @ )  ; in general although computer 
mameration of the total number of clusters is faster than the generation of perimeter 
Pbomials (which is of necessity more detailed) it is not fast enough to exploit this 
possibility. 

3. 

F o " o m  mixture of bonds it is sometimes convenient to consider the corresponding 
problem separately; however because of the bond-to-site transformation (Fisher 

a n d h a m  1961) bond problems may always be treated as site problems on the corres- 
ponding covering lattice. In general the covering lattice will have crossing bonds but the 
bondProblemon the honeycomb lattice corresponds to the site problem on the KagomC 
'h. nus if? is a function of dimension only we must expect the same value for two- 
duaensional site problems as for two-dimensional bond problems. We have derived data 
for? bond problem on the honeycomb, simple quadratic and triangular lattices ; these 
'@m have the advantage that their critical concentrations are known (Sykes and 
Essam 1964). Unfortunately the corresponding values of the cluster growth parameter It 
Bl(23): 

expansiom for the mean cluster size at low densities: bond problem 

Triangular I. = 8.626 ri: 0.096 

Simple quadratic i, = 5.210 k0.004 

Honeycomb 2 = 3.368 k0.002 



92 M F Sykes and M Glen 

are somewhat larger than for the corresponding site problems and this ratria ttr 
number of perimeter polynomials that can be obtained for a given expenditure ofQ 

puter time. The general observations of the previous section apply to these p robb  
and we give the expansion coefficients for Sfp) in table 3. 

TaMe 3. Coefficients for expansion of S@) = Cb,p'. Bond problem. 

r Triangular Simple quadratic Honeycomb 

1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
I 1  
12 
13 
14 
15 
16 
17 
18 

10 
46 
186 
706 
2 568 
9004 
30 894 
103 832 
343 006 
1123770t 

6 
18 
48 
126 
300 
762 
1 668 
4216 
8 668 
21 988 
43 058 
110 8321. 
202 4321 
561 02W 

4 
8 
16 
32 
54 
100 
182 
328 
494 
984 
1572 
2 656 
4 212 
8 162 
11 1761 
21 704t 
30 9941. 
60 5481. 

~~~ ~~~ 

t New coefficient. 
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Appendix Perimeter polynomials for the site problem 

D, = 27q l4 + 16%' ' + 8O3q l6 + 2 59%' + 6 73% + 13 63% l 9  + 20 469qZ0 + 21 372q2' + 11 562q22 
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plo I 3qi4+8@ 15 + 49% ' + 2 157q ' + 7 484q ' + 19 41%' ' + 42 963q20 
+ 72 256q21 + 93 747qZ2 + 84 468q23 + 39 5 9 9 ~ 1 ~ ~  

-,*i5+25%16+1 542q17+6 111q18+21 810q"+58 164q2'+133 380q2' 
& I - -  +247974q22+364314q23+41542&24+330414q25+ 136623q26 

+417 270q22+829 725q23+1 348 139q24+l 762 933q25 
+ I  800 147qt6+l 282260q27+474450q28 

D!3= 27q16+42&1'7+2 858q18+ 1444&''+58 9024'O+ 192 626q2' +554 523qZ2 
+ 1 331 286q23+2 746 954qt4+4 819 800q25+6 996 O03q26 
+8279398q27+7664811q28+4948 374q29+l 656656q3' 

+1  730943q23+4287699q24+9 131 949q25+16871 55Cq26 
+26571 525q27+35061 399qZ8+37965417q2'+32 198 928q30 
+ 19 012 074q3' + 5  812 482432. 

DI! = 3 1 5  + 117q + 801q ' + 4 771q1 + 18 608q'' + 63 804q20 + 179 186q2' 

D,, = hl6+ 168q' + 1 52%' + 10 0294 '' + 46 1 19q20 + 185 220q2 ' + 605 766q22 

Sunpe quadratic [attice 

D I = q p  D 2 = a 6  D3 = %'+2y8 

0, = 9q8 t Q9 +&lo  

Dj = q8  t2@' +28q10 + 1%' ' + 2 q 1 2  

D6 = 4q9 t 54q"+ 8%' + 60q ' + 16q ' + 2q ' 
D- = Qi0+ 13%' + 25%' + 228q l 3  + 100q14 + 20q' + 2q l 6  

D, = + l o t  8Oq" + 388q l 2  + 777q' + 818q l 4  + 48%' + 1524 l 6  + 2+17 + 2q' 
Dq = 28q" + 291q' + 1 1524 + 2 44+ l4 + 2 80%' + 2 089q ' + 856q17 + 2 1 6 ~  18 + 28q ' + 2q20  

+ 1 416q"+ 29G20 + 32q2' + 2q22 

19 53%"+8 13Oq2O+2 180q2' +380q22 + 36q23+&t4 

D~~ = '@I1 + 154f?12 + 9864 

D1i = j%"f 6%13 + 3 53Oq 14+ 11 7724' + 24 4724 l 6  + 33 3364 

Di, = 9q12+325q'3 +2  644q14+ 12 5 0 2 p  + 38 694q16 + 79 7 3 ~ ' ~  + 114 

+ 3 6764 l4 + 7 61%' + 9 750ql6 + 8 1~124'~ + 4 330q18 

+ 31 2024 l 8  

502q'9+83 183q20+41 136q2'+14064qZ2+3 208q23+480q24 
+ 4 o q 2 5 + 2 4 2 6  

D ' 3 = q i 2 t  11%13 + 1 660qI4 + 10 480q" +44 574q16 + 129 020q17 +264 482q18 
-1391 43%"+423 786q20 + 337 144q2' + 193 820q2* + 79 240q23 
+22 993q24+4 5O8qz5 +59QZ6 +N2' + & 2 8  

f1347560q2'+ 1538 558q2' + I  331 170q22+859 176q23+410 302qz4 
+142624q25+35 664q26+6 160q27+716q28+48q29+2q30 

Is ='lBf 33%'4+4 608q15 + 33 O46ql6 + 160 296q17 + 566 88(jq18 + 1 497 208~19 
t301443&20+4655 776q21+5 565 832q22+5 14236423 
t3662778q24+1 978 664q25+805 740q26 +242484q27+53 286428 

= 2413f828q l4 + 7 508q l 5  + 41 4084 + 158 532417 + 437 186q18 + 887 4O%l9 

D 

+8 152429+852q30+52431 + ~ 3 2  
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+ 5  185083g20+10325335q21+16 1 9 2 6 0 8 q 2 2 + 2 0 0 5 4 ~ 2 3  
+196338w24+15  125 366425+9086 11&26+4207428q2i 
+ 1 487 681q2' +393 736q29 + 76 826q30 + 10 584q3' + 1 0 O C ~ 3 2  

14 38%16+ 110 13&" + 581 976q1'+2 346 54&719 
+7313380q20+18091 092q2'+35693692q22+56587516q23 
+ 72 212 800q24+ 74 161 528q25 + 61 122 466q26 +40 085 9 3 ~ 2 7  
+ 20 749 892q2' + 8 377 OOOq29 + 2 609 1 16q 30 + 614 8 1 6q3 
+ 107 801q3,+ 13 42+33+ 1 160q34+60q35 +2q36. 

D16 = 106q'4+2406q'5+23311~'6+140 111q'7+615940q18+2031 39+'9 

+ 56q33 + 2q34 

D17 = 2&14+ 1 

Honeycomb lattice 

D1 = q3 D, = l h 4  D3 = 3q5 

D4 = 7q6 D5 = 3q6+15q7 

0 6  = +f+i5&-3i tq8 

D7 = 3q7+60q8+62q9 

D8 = 37~8+177q9+123q'0 

D9 = la8+ 1%' +471q'0+246q" 

Dlo = l~ '+111q9+744q'0+1 167q"+503q'2 

D11 = 39q9+705q10+2361q"+2874q'2+1 029qI3 

D12 = 9q9+44G10 + 3 006q" + 7 078qI2 + 6 927q13 + 2 115q l 4  

Dl3 = q9 + 207q'O + 2 721q' ' + 1 1 181q" + 20 16Oq l 3  + 16 473q l4 +4 35%" 

D14 = 69q'O+ 1902q" + 12 937kl2+37 635q"+55 79%l4+38 526q15+9012q'6 

Dl 5 = 1%' + 1 083q' ' + 11 758q l 2  + 52 3 11q' + 120 537qI4 + 149 349q1 
+893044'6+18723q'i 

+ 390 7504 '' + 205 416qI7 + 39 065q l8  

D16 = 1&'O+492q1 ' + 8 895qI2 + 57 960ql3 + 194 6563qI4 + 367 39% 

Di, = 16%" + 5 796qI2 + 53 949q' + 252 297qI4 + 674 72%" + 1 081 6O8ql6 
+ 1 001 8 1%' + 470 32%'' + 8 1 759q19 

Di8 = 33q1'+3258q'2+43 728q13+275 61~ '4+998280g '5+2227525 tq '6  
+3085374q1'+2531 651q'8+1072167q'9+171 618q20 

+ 7 046 169q17 +8 595 792q1'+6 317 457qI9 + 2 436 234qZ0 
+361 O32q2l 

D19 = 3q"+i 522q12+31 536q13+262848q'4+1 248556qI5+3696 108ql6 

D20 = 565h'2+20355q'3+224571q'4+1 365 31&15+5 186827&16 
+ 12 951 1 17q'7+21 572 958q" +23 461 497qI9 + 15 606 471q'O 
+ 5  518 69Q2'+761 109q22. 
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